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Chapter 1

Introduction

This document describes an architecture for implementing the pre-alpha version of the Ouroboros Peras
protocol for the Cardano blockchain. Ouroboros Peras is a novel protocol that enables fast settlement
under optimistic conditions.

For a description of the problem of settlement/finality on Cardano, as well as possible use cases, we
recommend reading to the corresponding Cardano Problem Statement.

https://github.com/cardano-foundation/CIPs/blob/master/CPS-0017/README.md

For a description of the Peras protocol, its high-level dynamics and a formal specification, we refer to
the Peras Cardano Improvement Proposal and the Peras website.

https://github.com/cardano-foundation/CIPs/blob/master/CIP-0140/README.md
https://peras.cardano-scaling.org

This document is based on the work of the Peras Innovation team that created the above resources.

Overview. We reify the high-level description of the protocol by showing how Peras can be inte-
grated into the existing node architecture, while reasoning about lower-level security properties such
as bounded resource usage under adversarial activity. We proceed by giving an outline implementation
plan for cardano-node, the Haskell implementation, and define the tests necessary to validate the im-
plementation. Finally, we portray the interactions of Peras with other Cardano features (Mithril and
Ouroboros Leios), and list the identified risks and opportunities.

Acknowledgements. We would like to thank members of the Peras research team, the Peras and
Leios Innovation teams, the IOE Network and Consensus teams, the IOG Mithril team and the Intersect
Technical Steering Committee for fruitful discussions.

Latest version and feedback. The latest version of this document is available at

https://tweag.github.io/cardano-peras/peras-design.pdf

For asking questions and reporting feedback, as well as the source code of this document, see the GitHub
repository at

https://github.com/tweag/cardano-peras
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Chapter 2

Architecture

Figure 2.1 gives a graphical overview of the data flow between the components involved in the archi-
tectural changes of this document. To keep the diagram simple, not all dependencies are indicated; for
example, many components require access to a recent ledger state in order to validate votes or certifi-
cates or to decide whether to cast a vote. We elide all existing components that do we do not expect to
modify non-trivially.

Peras storage

Peras mini-protocols

ChainDB

Existing mini-protocols

Genesis

PerasVoteMint

PerasVoteDB

PerasCertDB

VoteDiffusion CertDiffusion

BlockMint

ChainSel

BlockFetch

GDD

cast vote quorum reached

new votes
for the current round

certificates from upstream
and for downstream peers

potentially include cert

influences weight
of boosted blocks

block contains cert

influences
preferencesinfluences comparisons

of candidate chains

latest certificate
to signal successful round

FiguRe 2.1: Overview of the data flow between the components of this document

2.1 Protocol parameters
For context, we list existing (Praos/Genesis) protocol parameters in table 2.1.

The Peras protocol is influenced by various new protocol parameters, also see [Bai+25], whichwe list
in table 2.2. The values of these parameters are not yet final, and justifying their values (especially the
ones related to cooldowns) is out of scope for this document. For explicitness and to avoid confusion,
we use a relatively verbose naming scheme. The Cardano Ledger allows protocol parameters to be
controlled via on-chain governance. We indicate whether this flexibility is likely to be useful.

perasRoundSlots Peras round length, number of slots per Peras round.
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Description Unit Symbol Mainnet value

Active slot coefficient slot−1 asc 1/20

Security parameter for chain growth block kcp 2160

Chain growth window size
to achieve common prefix slot Tcp 3 · kcp/asc = 129 600

Chain quality window size
to guarantee at least one honest block slot Tcq kcp/asc = 43 200

Genesis window slot sgen Tcp

Table 2.1: Existing Praos/Genesis protocol parameters

Name Unit Symbol Feasible value Governable?

perasRoundSlots slot U 90 ✓
perasBlockMinSlots slot L 30 to 90 ✓
perasBlockMaxSlots slot n.a. TCQ = kcp/asc ✓
perasHealingSlots slot Theal t.b.d. ✘
perasCertMaxSlots slot A Theal + Tcq ✘

perasIgnoranceRounds round R ⌈A/U⌉ ✘
perasCooldownRounds round K ⌈(A+ Tcp)/U⌉+ 1 ✘

perasBoost block B 15 ✓
perasQuorum weight τ 3/4 ✘

perasN committee seat N 500 to 1000 ✓
perasVoteSizeLimit B n.a. 200B ✓
perasCertSizeLimit B n.a. 20 kB ✓

Table 2.2: New Peras protocol parameters

perasBlockMinSlots Peras block selection offset, the minimum age (in slots) of a block to be voted on
at the beginning of a Peras round.
Note that the rather small values of this parameter allow relatively weak adversary to execute
“vote splitting attacks”, see appendix A.1.2 for more details.

perasBlockMaxSlots The maximum age (in slots) of a block to be voted on at the beginning of a Peras
round.
This parameter is new compared to the CIP [Bai+25]. It is motivated to allow validating votes/cer-
tificates ahead of the current chain, especially while syncing.1

perasHealingSlots The amount of slots needed to heal from a failed Peras voting round, depending on
perasBoost. A concrete value has yet to be chosen.

perasCertMaxSlots The maximum age of a certificate to be included in a block.
1We note that the exact details of forecasting are still subject to discussions, in particular pending feedback by the Peras

research team, cf. https://github.com/tweag/cardano-peras/issues/25.
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perasIgnoranceRounds, perasCooldownRounds Lengths of the chain ignorance period and the cooldown
period. Determine for how long honest nodes will not vote after an unsuccessful Peras round.

perasBoost The extra chain weight that a certificate gives to a block.

perasQuorum The total weight of votes required to create a certificate, assuming that the total (expected)
weight of a committe is 1.

perasN The expected number of committee seats, i.e. the total number of votes that can be cast per
round.

perasVoteSizeLimit, perasCertSizeLimit Maximum size (in bytes) of Peras votes and certificates.

kcp The security parameter (reinterpreted to measure weight of chains instead of just blocks) needs to
be increased to retain the same security as in pure Praos.

For a more detailed discussion of the interactions of the various parameters we refer to [Bai+25].

2.2 Votes and certificates
Peras introduces two new entities: votes and certificates.

2.2.1 Votes
Peras voting proceeds in rounds, lasting perasRoundSlots each. Every round has an associatedweighted
committee [GKR23, Section 4], a set of stake pools responsible for voting in this round, together with
individual amounts of voting power, i.e. their weight in the committee. The exact committee election
scheme has not yet been decided, but it must satisfy the following informal properties.

a) An adversary with total stake α can not get significantly more than α relative weight in any
committee. The (expected) weight of a pool in the committee is proportional to its stake.

b) The (expected) size of the committee can be controlled via the perasN parameter.

At the start of every Peras round (lasting perasRoundSlots), all of the honest nodes in the corre-
sponding Peras committee will usually vote for a recent block (otherwise, Peras is likely entering a
cooldown period). Votes are weighted according to the weight of the pool that cast them in the com-
mittee, which allows for an improved size-security tradeoff compared to unweighted votes (where the
same party might be allowed to vote multiple times), cf. [GKR23]. Under optimistic conditions, votes of
total weight of at least perasQuorum are cast for the same block, in which case the round is successful.

A vote contains the following data:

• Round number.

• Point of the block that is being voted for.

• Stake pool identifier.

• Associated cryptographic material, i.e. a signature and potentially an eligibility proof.

The weight of a vote is implicit here and can be recomputed upon validation.
A vote from round r (starting in slot s) for a block in slot t is valid under the following conditions.
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• The cryptographic material must be valid, ensuring that the vote was indeed cast by an eligible
pool.
This requires the stake distribution, certain protocol parameters and the epoch nonce. The natural
choice is to use the same data that would be used to validate a header for slot s.

• s− perasBlockMaxSlots ≤ t < s− perasBlockMinSlots.

• The slots s and t are in the same era, or at least, the eras of s and t both support Peras.

2.2.2 Certificates
Once a node observes votes of the same round for the same blockwith total weight of at least perasQuorum,
then it will create (via aggregation) a corresponding (succinct) certificate proving this fact.

A certificate contains the following data:

• Round number.

• Point of the block that is being voted for.

• Associated cryptographic material certifying that there are votes of weight perasQuorum voting
for the aforementioned block in the given round.

Validity of certificates is analogous to that of votes.
We note that the cryptographic material may vary depending on which votes are aggregated. Such

certificates are only artificially different and should be treated interchangeably.
On the other hand, we assume that equivocating certificates, i.e. two certificates in the same round

for different blocks, do not occur.

Assumption

For every Peras round, there is at most one block that has a valid certificate in that round.

This assumption is justified by an appropriate parameterization of perasQuorum and perasN, such
that an adversary never attains sufficient weight in the committee to equivocate certificates.2

2.2.3 Realizing votes and certificates
The underlying cryptography used to realized votes and certificates is out-of-scope for this document,
we refer to [Bus25] for more details. Here, we only summarize a few key metrics in fig. 2.2, while noting
that these are still subject to change3; however, we do not expect them to get significantly worse.

The existing formal specification in Agda for the Consensus and Ledger layer [Día25; Kni+25] can
be naturally extended with the details of vote and certificate validation, in particular for conformance
testing.

2Future work on the Peras protocol might relax this assumption and hence allow a less conservative parameterization. How-
ever, certain design decisions (especially around certificate diffusion) in this document would need to be reconsidered to properly
handle equivocating certificates, as we decided not to prematurely complicate the design without a clear picture of the required
semantics.

3In particular, certificates might get significantly smaller (≤ 1 kB).
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Votes Certificates

Size 90B to 164B 7 kB to 10 kB
Generation 280 µs 63ms to 93ms
Verification 1.4ms 115ms to 157ms

FiguRe 2.2: Preliminary metrics for votes and certificates

2.2.4 Handling votes and certificates from the future
A vote or certificate is from the future if its round has not yet begun according to the local wallclock.
We suggest to handle such votes just like headers from the future are already being handled:

• Upon receiving a vote or certificate x from the near future (which is currently defined to be at
most 2 s in the future), an artifical delay is introduced such that x is no longer from the future,
after which x is processed further.
This rule is motivated by the insight that it would be unreasonable to expect clocks between
honest nodes across the world to be perfectly synchronized.
The artifical delay might not be necessary for Peras votes/certificates as there is, in contrast to
headers/blocks, no incentive to diffuse your vote as early as possible (as long as it still arrives
within a Peras round). However, using the exact same logic as for headers has a conceptual
simplicity.

• Upon receiving a vote or certificate from the far future (defined to be more than 2 s in the future),
we immediately disconnect from the sending peer as this constitutes adversarial behavior.

2.2.5 Handling votes and certificates from the past
The formal specification of Peras in [Bai+25] allows to diffuse votes (and hence processes the resulting
certificates) that lie far arbitrarily in the past. In an actual implementation, this is undesirable, as the
node does not maintain the necessary state (e.g. arbitrarily old stake distributions) in order to even be
able to validate such votes/certificates. We now describe an approach for resolving this in an actual
implementation.

Distant past If a caught-up node observes a vote or certificate for the first time while its round is
already from the distant past (i.e. more than Tcp slots old), it can safely ignore/discard it, as such
votes and certificates can only affect (and hence further strengthen compared to alternative chains)
the common prefix of the honest nodes, i.e. the already-immutable part of their selection.
A consequence of this rule is that two honest caught-up nodes can differ harmlessly in whether
they have seen a certificate for a historical round, namely when an adversary diffuses certain
votes/certificates very late, such that some honest nodes still store a particular certificate for an
old (but still just young enough) round, but other nodes ignore it as it is already (barely) too old.

Near past In contrast, we handle votes and certificates from the near (i.e., not distant) past by disal-
lowing votes from past rounds (with some tolerance to account for an acceptable clock skew), but
still allowing to diffuse such certificates.
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This is justified by the fact that honestly cast and diffused votes have ample time to be diffused
within a Peras round. On the other hand, an adversary can delay their votes for some round r

arbitrarily, for example such that some honest nodes consider them to have arrived on time for
round r and hence observe a quorum, while other honest nodes do not. However, despite not
receiving these votes, the nodes in the latter category still quickly learn of the quorum in round
r as the certificate is still diffused separately.
This approach is compatible in behavior with the formal specification, and directly bounds the
amount of vote diffusion work that an honest client has to perform per round (namely, to down-
load the votes of that round). In particular, it prevents attackers from releasing lots of votes from
past rounds in a burst.

2.2.6 Monotonicity of honestly observed certificates
For future reference, we observe that an honest nodes observes Peras certificates in almost monotoni-
cally increasing order of round numbers in the sense below.

If an honest caught-up node observes a certificate for round r but has not yet done so for round
r − 1, this means that

• either a cooldown just ended, during which no honest nodes voted and so no certificate was
created for many rounds, so the node has definitely seen all certificates for rounds smaller than r,

• or other honest nodes voted in round r due to them observing a certificate for round r − 1 at
that point, so it is only a matter of time until the node also receives that certificate (which we can
assume to happen before round r+1 starts, as perasRoundSlots ≫ ∆, where∆ is the maximum
network delay).
An adversary with sufficient stake α > 1− perasQuorum can cause this scenario by withholding
its votes during round r−1 until closely before the start of round r, and then diffusing them only
to a subset of the honest nodes in time before round r. Also see appendix A.2.1.

In both cases, the sequence (rk)k∈N of round numbers of certificates observed by an honest node in-
creases almost monotonically, i.e. maxi<k rk ≤ rk+1 − 1 for all k ∈ N.

2.3 Changes to the Ledger
The Cardano Ledger [CVG23; Kni+25] needs minor modifications to accomodate Peras.

Peras requires new protocol parameters, see section 2.1, which should be a routine change.
Apart from that, the Ledger needs to be modified to account for Peras certificates which are included

on chain to coordinate the end of a cooldown period. We note that certificate are morally part of the
Consensus layer (in particular, validating them requires the epoch nonce, which no other ledger rule
does); however, certificates are likely too large to be stored in a header.

Concretely, we propose the following checks for a block body B in round r containing a certificate
cert:

a) The certificate cert must be valid.

b) The round of certmust be strictly greater than the round of the previous certificate on chain, and
it must lie between r − perasCertMaxSlots and r, i.e.

r − perasCertMaxSlots ≤ round(cert) ≤ r .
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This ensures that cert is neither too old nor too new, such that the ledger state thatB is validated
against contains the necessary information to validate r.

c) The size of the certificatemust be bounded. Concretely, we propose a protocol parameter perasCertSizeLimit
for the size of a certificate, and additionally, we let the size of the certificate count towards the
maximum block body size.

The only change to the ledger state is the addition of the round number of the last certificate on chain,
and the stake distribution for the previous epoch in case cert is in a previous epoch compared to B.4

2.3.1 Analysis
Note that these rules allow the adversary to needlessly include certificates in chain even if there is
no current/upcoming cooldown period. This does not impact the purpose of on-chain certificates: If
the system does enter a cooldown (via honest nodes stopping to vote), the adversary will run out of
certificates to include on chain due to the monotonicity property of round numbers.

Moreover, this monotonicity property also ensures that the adversary can (on average) only include
one certificate per Peras round.

• This means that, on average (assuming no cooldown periods), an attacker with sufficient stake to
be elected at least once per round on average5 can include

perasCertSizeLimit
perasRoundSlots

B/slot

without anyone paying for the associated cost of bandwidth/storage.
For comparison, the fee for including perasCertSizeLimit bytes on the chain as part of a transac-
tion is given by minfeeA ·perasCertSizeLimit. For realistic values on the conservative end (using
minfeeA = 44 and minfeeB = 155381 on Cardano mainnet as of epoch 5376, perasRoundSlots =

90 and perasCertSizeLimit = 20 kB, cf. fig. 2.2), this would correspond to a cost of

minfeeA · perasCertSizeLimit+ minfeeB
perasRoundSlots

≈ 11 504 lovelace/slot ≈ 41.42ADA/h

assuming a slot length of one second.
For context, note that implementing Peras also entails diffusing perasN votes per round (and the
total size of the votes is significantly large than perasCertSizeLimit), and the bandwidth induced
by this is also currently not planned to be compensated/incentivized.

• Additionally, we need to validate these uselessly included certificates. As they do not affect the
ledger state, this validation can in principle be performed in parallel to the ledger rules, partially
mitigating the impact.

Finally, note that otherwise-honest nodes have no incentive to include such useless certificates, in par-
ticular as they usually could instead include more transactions (which pay fees) in their blocks.

4The ledger state already keeps the stake distribution of the previous epoch around for its reward calculation.
5Concretely, this is satisfied for an adversary with stake α if ϕ(α) · perasRoundSlots ≥ 1, so for α ≥ 21.8% if f = 1/20 and

perasRoundSlots = 90.
6See e.g. https://cexplorer.io/params.
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2.3.2 Alternatives
If this cost is considered to be unacceptable, a drastic measure would be to require pools to pay a com-
parable fee when they include a certificate in a block (which is a rare thing for honest nodes). However,
such a fee for pools is unprecedented, and raises various unresolved questions regarding incentives and
what to do when honest pools run out of funds to pay this new fee.

Another option would be to modify the Peras protocol to reliably determine whether an honest node
could have included a certificate into a particular block. However, we are not aware of an easy way to
do this.

2.4 Storing historical certificates for Ouroboros Genesis
Nodes bootstrapping via Ouroboros Genesis (to minimize trust assumptions) need to be able to assess
the weight of competing historical chains in order to resist adversarial long-range attacks [Bac+25].
Computing the weight of a chain requires the corresponding certificates indicating which blocks are
boosted. See appendix A.2.2 for more details.

Even if a syncing node did not encounter any adversarial challengers (and hence did not ever need
to compute weight), it still must get all certificates: Indeed, other peers syncing from that node (e.g., in
the future) might encounter adversaries and therefore require those certificates. Briefly, there is a “duty
to remember” certificates even if they are not directly useful for the caught-up node anymore.

We describe the protocol for retrieving historical certificates in section 2.6.2, the associated stor-
age component in section 2.9, and the adjustment to comparing chains by weight instead of density in
section 2.7. Furthermore, it is necessary to prevent block synchronization from outpacing certificate
acquisition, as this would require retaining historical state longer than necessary for certificate vali-
dation.7 To accomplish this, we propose to temporarily stop selecting blocks if doing so would cause
the immutable tip of the chain to advance while certificate acquisition is lagging behind. This is very
a mechanism very similar to the Limit on Eagerness in the Cardano Genesis implementation [Bac+25],
which avoids permanently committing to any chain if a disagreement between competing header chains
is yet to be resolved by a density comparison.

2.5 Object diffusion mini-protocol
This section presents a generic object diffusionmini-protocol. Heavily inspired by Tx-Submission [Cou+25,
Section 3.9] and the related “Decentralized Message Queue” CIP [Ray+24], we hope to use it for cer-
tificate and vote diffusion. This protocol aims are synchronising a data base of objects (e.g., for Tx-
Submission, their mempool) between peers:

• Clients and server maintain the knowledge of a queue of objects of which the server has knowl-
edge and the client presumably does not. Importantly, the queue is of bounded size, and the
maximal size is a hardcoded parameter of the implementation. The objects are represented by
identifiers, typically orders of magnitude smaller than the objects themselves.

• Clients can ask their servers to provide them with an ordered list of the next objects that they
wish to diffuse. The notion of order—and therefore of which objects are next—is internal to each

7We do not expect certificate validation to become the bottleneck of syncing, as perasRoundSlots ·asc = 4.5 and 4 to 5 blocks
empirically take longer to validate than a certificate. Also, we note that certificates can be trivially validated in parallel.
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server; it might for instance be the order in which they themselves got aware of the objects in
question.

• Clients can then, given an object identifier, request the corresponding object to the server. This is
not mandatory, and, if several servers propose to diffuse the same objects, the peer might decide
to download only from a subset of them. The strategy may vary depending on the objects, how
promptly the client wants to get them, and how important it is for them not to miss one.

• When requesting the next batch of object identifiers, the client informs the server that they are not
interested in some of the objects anymore, possibly because they have acquired them from this
server or another one. They do that by acknowledging a number of identifiers from the beginning
of the queue. They must, in doing so, ensure that the queue remains under the maximal allowed
size.

Figure 2.3 gives a graphical representation of the state machine of the proposed mini-protocol, while
fig. 2.4 provides a table with the states’ agencies. The coming subsections give more details on the mini-
protocol.

StInitstart StIdle

StDoneStObjIdsBlockingStObjIdsNonBlocking

StObjs

MsgInit

MsgDone

MsgRequestObjIdsBlocking

MsgReplyObjIds

MsgReplyObjIds

MsgRequestObjIdsNonBlocking

MsgRequestObjs

MsgReplyObjs

FiguRe 2.3: Object diffusion state machine

2.5.1 Parameters
This subsection describes the parameters of this generic protocol. They are notions that need to be made
concrete for each implementation of the protocol.

object The abstract type of objects diffused by the protocol.

id Identifier that uniquely identifies an object.
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state agency
StInit Client
StIdle Client
StObjIdsBlocking Server
StObjIdsNonBlocking Server
StObjs Server

FiguRe 2.4: Object diffusion state agencies

objectIds An opaque type returned by the server when asked for object ids. It is not explicitely a list
of id, because the server may want to add metadata to the ids, and/or run a compression scheme
to limit the size of its response.

responseToIds A function with type objectIds → [id].

initialPayload An abstract payload that helps initialise the state of the server. For instance, a slot
number before which the client does not care about the objects.

2.5.2 Protocol messages
MsgInit (initialPayload) Initial message of the protocol, with its payload.

MsgRequestObjIdsNonBlocking (ack, req) The client asks for up to req new object ids and acknowl-
edges ack old ids. The server immediately replies (possibly with an empty list).

MsgRequestObjIdsBlocking (ack, req) The client asks for up to req new object ids and acknowledges
ack old ids. The server will block until new objects are available.

MsgReplyObjIds (objectIds) The server replies with the ids of its available objects. In the blocking
case, the reply is guaranteed to contain enough information to build at least one object id with
responseToIds. In the non-blocking case, the reply may not contain any actual data.

MsgRequestObjs ([id]) The client requests objects by sending a list of object ids. The total size of the
corresponding objects MUST not be bigger than the size limit in bytes.

MsgReplyObjs ([object]) The server replies with the list of all the objects that were requested.

MsgDone The server terminates the mini protocol.

Table 2.3 presents the state transitions and the associated messages.

2.5.3 Client and server implementation
The protocol has two design goals, inherited from Tx-Submission [Cou+25, Section 3.9]: It must diffuse
objects with high efficiency and, at the same time, it must rule out asymmetric resource attacks from a
client against a server.

Typically, downstream nodes will run one instance of the client per upstream peer that they have,
and upstream nodes will run one instance of the server per downstream peer that they have.

12



from state message to state
StInit MsgInit StIdle

StIdle MsgRequestObjIdsNonBlocking StObjIdsNonBlocking

StIdle MsgRequestObjIdsBlocking StObjIdsBlocking

StObjIdsNonBlocking MsgReplyObjIds StIdle

StObjIdsBlocking MsgReplyObjIds StIdle

StIdle MsgRequestObjs StObjs

StObjs MsgReplyObjs StIdle

StIdle MsgDone StDone

Table 2.3: Object diffusion mini-protocol state transitions

Theprotocol is based on two pull-based operations. The client can ask for a number of object ids, and
it can use these object ids to request a batch of objects. The client has flexibility in the number of object
ids it requests, whether to actually download the object and how it batches the download of objects. For
instance, a downstream node might choose to download an object from a subset its upstream peers that
shared its id.

The client can also switch between requesting object ids and downloading objects at any time. It
must, however, observe several constraints that are necessary for a memory-efficient implementation
of the server.

Conceptually, the server maintains a limited size FIFO of outstanding objects per client. (The actual
implementation can, of course, use the data structure that works best.) The maximum FIFO size is a
protocol parameter. The protocol guarantees that the client and server agree on the current size of that
FIFO and on the outstanding object ids. The client can use a variety of heuristics to request object ids
and objects. One possible implementation for a client is to maintain a FIFO that mirrors the server’s
FIFO but only contains the object ids (and the size of the objects) and not the full objects.

After the client requests new object ids, the server replies with a list of object ids and puts these
objects in its FIFO. The server may reply with less ids that requested, indicating that it has no more
objects after those. As part of a request, a client also acknowledges a number of objects from the begin-
ning of the server’s FIFO that it is no longer interested in. The server then removes them from its FIFO.
The server checks that the size of the FIFO, i.e. the number of outstanding objects, never exceeds the
protocol limit and aborts the connection if a request violates the limits.

The choice of a FIFO iswhat allows for acknowledgement by a simple integer, which ismore network-
efficient and allows for simple implementation. However, it somewhat constrains the order in which
we request the objects. Note that we could use another structure and implementation, as long as the
acknowledgement scheme still makes sense.8

The protocol supports blocking and non-blocking requests for new objects ids. If the FIFO is empty,
the client has nothing better to do than to wait for the server to acquire more object ids; in that case
it should use a blocking request, in order to avoid polling. The rest of the time, the client might prefer
non-blocking requests to prevent giving agency to the server for too long a time, and being able to
download objects in the meantime. The server must reply within a small timeout to a non-blocking

8In the case of Tx-Submission, the use of a FIFO matters because we also care about the order of transactions themselves, as
they may depend upon each other.
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request, possibly with an empty list. A blocking request, on the other hand, waits until at least one
object is available.

The client can request any batch of objects from the current FIFO in any order. The server must
respond with all the requested objects.9

The client must ensure that the total size of the object batch it requests does not exceed the protocol’s
size limits. In order to do so, the objectIds type should contain enough information to infer the size of
each object, or the protocol should exchange objects with fixed size.10

2.5.3.1 Blocking vs. non-blocking ids requests

When requesting object ids, a client has the choice between emmiting a blocking or a non-blocking
request. Blocking requests are kinder to the network because they avoid round-trips for nothing. How-
ever, they abandon the agency to the server, preventing the client to request objects in the meantime.

We propose the following rule to govern this decision:
If the pipeline of that specific client-server pair contains only MsgRequestObjs messages, and these

messages span over all the objects in the FIFO thatwe have not yet obtained, then send MsgRequestObjIdsBlocking.
Otherwise, send MsgRequestObjIdsNonBlocking.

Note that this criterion covers the simpler case of empty pipelines and FIFO. Note that, if we send
MsgRequestObjIdsBlocking while the messages in the pipeline do not cover all of the objects in the
FIFO that we are missing, then we might get stuck with ids that we will not be able to process until the
server gets net ones. This point holds also if we have requested the objects from other peers, as they
might fail to deliver. Finally, note that, if we send MsgRequestObjIdsBlocking while there are messages
in the pipeline that are not MsgRequestObjs, then we might receive new ids that we will not be able to
process (with this server) until the server gets new ones.

We believe that this rule covers all the use cases one might have of this protocol. Variations from
this rule for specific protocols would domain knowledge that for sure we will not need specific ob-
jects, but then nothing prevents us, in such a case, from first acknowledging those objects with a
MsgRequestObjIdsNonBlocking, and only then send MsgRequestObjIdsBlocking if the answerwas empty.

2.5.3.2 Orchestration

A downstream node should run an instance of the object diffusion mini-protocol for each of its upstream
peers, with the client side running on the node, and the server side running on its peers.

If the network is well-connected, it means that the node should receive the same object id from
multiple peers. The choice of which peer(s) from which to actually download the object depends on a
large variety of parameters, specific to each parameterization of the mini-protocol:

• the latency/throughput constraints,

• the expected network load,

• the quality of each node-to-node connection.
9This is different from the behaviour of Tx-Submission, that allows the server to omit transactions in its response, indicating

by doing so that they are invalid. This behaviour can be recovered by using transaction options as objects.
10For votes and certificates, we will use the latter. See Section 2.6.
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2.5.3.3 Use-case specific functions

As the object diffusion protocol is generic, its implementation may benefit from having specific key
functions where use-case specific behavior is implemented. This would allow code sharing between
implementations. We identify the following use-case specific functions:

In the server:

• initialise, consuming initialPayload.

• nextIds to retrieve the ids of objects it can serve, when receiving MsgRequestObjIdsBlocking or
MsgRequestObjIdsNonBlocking.

• idsToObjects to retrieve objects given their ids, when receiving MsgRequestObjs.

In the client:

• onRecvId to add object ids to the FIFO, and to reward/penalize their peer depending on howmuch
time they took and/or how many ids they sent.

• onRecvObject to register new objects in the database.

• objectStatus to retrieve data about an object, given its id. Typical data may include the expected
size of the object, and whether it has been/should be requested from the server to which this
client instance of the mini-protocol is connected. Reasons for no longer wanting to retrieve an
object could be that it has already been retrieved from another peer, has been considered invalid,
or has been superseded (for instance, if the object is a vote, but a certificate for the same round
has already been received). In any case, this hook should provide enough information to decide
whether to acknowledge the object’s id when sending the next MsgRequestObjIdsBlocking or
MsgRequestObjIdsNonBlocking to the server.

I may be possible to have a fully generic implementation of the object diffusion mini-protocol, where
the use-case specific behavior is entirely contained in the key functions above. In that case, those could
be provided as hooks to the generic implementation.

2.6 Vote and certificate diffusion
This section presents our proposed protocols for diffusion of votes (section 2.6.1) and certificates (sec-
tion 2.6.2) between peers, based on the object diffusion mini-protocol described in section 2.5. Finally,
section 2.6.3 presents a discussion about alternative designs that we have considered.

2.6.1 Vote diffusion mini-protocol
Requirements. Diffusion of votes takes place between caught-up nodes in every Peras round. The
core requirement is that all honest pools observe a quorum before the end of a round, as long as votes
with weight of at least perasQuorum have been cast for the same block in that round.

Concretely, assuming perasN = 1000 and a vote size of 164B (table 2.2 and fig. 2.2), the total size of
the votes of a round is perasN·164B = 164 kB, which needs to be diffusedwithin perasRoundSlots = 90

slots/seconds. This is a more relaxed timeliness constraint compared to block diffusion, where blocks of
size up to 90 kB need to be diffused within ≲ ∆ = 5 slots/seconds.
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Using object diffusion. We propose to use the generic object diffusion mini-protocol (section 2.5)
instantiated for votes. In particular, we want:

object A Peras vote.

id A vote ID, i.e. a pair of a round number and an identifier for a committee seat of that round, deter-
mining the pool identity.
Concretely, in scheme described in [Bus25], this is either the hash of the cold key of the voting
pool, or (as an optimization) an index into the stake distribution.

objectIds, responseToIds A list of ids. Correspondingly, objectIds is the identity function.

initialPayload No payload is necessary; only votes near the current round of the system are ever
diffused.

The server advertises the vote IDs of the votes it has received for the current round (sorted by
weight in decreasing order), cf. section 2.2.5. Votes for older rounds are not advertised, cf. section 2.2.5.
Additionally, it serves the votes corresponding to the unacknowledged vote IDs.

We now describe the dynamics of an honest node engaging as the client in vote diffusion with its
peers, assuming that it is caught-up.

• The node continually requests more vote IDs from its peers (with a limit on unacknowledged
votes), using non-blocking or blocking requests depending on whether there are are outstanding
unacknowledged votes.

• The client disconnects from the server if the round of the vote ID is from the future or the past
(modulo some acceptable clock skew), cf. sections 2.2.4 and 2.2.5.

• At the beginning of a Peras round, the node will start receiving lots of new vote IDs for that
round from all of its (honest) peers. For each such vote ID, the node will ask one peer (or a small
number in parallel) out of the peers that offered this vote ID for the corresponding vote, relying
on protocol-level timeouts for a prompt delivery (or otherwise disconnecting from the peer).
By limiting the number of votes that are being downloaded in parallel, the traffic is implicitly
spread out over the first few seconds of the round, bounding the spike of network activity.
This strategy naturally handles adversarial vote equivocation, cf. appendix A.2.3.

• The client stops downloading votes as soon as it has votes with weight of at least perasQuorum.
However, it still continues to offer these vote IDs/votes during the round, as it can bemore efficient
for downstream peers to download a few remaining votes to observe a quorum by themselves
instead of downloading a certificate.

• The client always checks that the votes indeed correspond to the advertised vote IDs, and that the
votes are in fact valid, and disconnects from the offending peer otherwise. Together with the fact
that the number of votes per round is bounded by the size of the Peras committe, this bounds the
work of the client.

The node does not send requests for vote IDs or votes while it is syncing (in particular, it could not even
validate them at this point), which can be determined by the Genesis State Machine [Bac+25] or a more
ad-hoc criterion like the proximity of the chain tip to the current wall-clock time.

This protocol shares several similarities with Tx-Submission, and we anticipate that the implemen-
tation can benefit from the insights of the design in cardano-node. In particular, the IOE Network team
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has been reworking the inbound side of Tx-Submission11 to more efficiently download transactions from
different peers (avoiding repeated downloads).

Finally, we mention that nodes that do not intend to participate in relaying traffic through the Car-
dano network (for example certain wallets or nodes used by dApp developers) can reduce bandwidth
requirements both for them and their upstream peers by requesting certificates (section 2.6.2) instead
of votes. We propose to add an appropriate configuration flag to toggle this behavior.

2.6.2 Certificate diffusion mini-protocol
Requirements. Diffusion of certificates is required both for syncing (a)) and caught-up (b)) nodes:

a) Primarily, nodes/pools syncing via Ouroboros Genesis need to be able to obtain historical certifi-
cates in order to choose the correct historical chain, cf. section 2.4.
The Cardano implementation of Ouroboros Genesis [Bac+25] requires that syncing nodes are al-
ways connected to at least one honest peer. (This requirement is called the “honest availability
assumption”.) In practice, this is guaranteed by connecting to a sufficient number of appropri-
ately sampled peers. To reduce the load on these peers (and for a more efficient use of resources
generally), downloading the same certificates from multiple peers must be avoided.12

b) Additionally, diffusing certificates even between caught-up nodes is necessary in certain cases
involving adversarial activity, such as late votes (section 2.2.5) and equivocation attacks (ap-
pendix A.2.3).

We note that certificates can also be diffused in blocks (in order to coordinate the end of a cooldown);
this is orthogonal to the discussion in this section.

Using object diffusion. We propose to again use the generic object diffusion mini-protocol (sec-
tion 2.5) instantiated for certificates. In particular, we want:

object A certificate.

id A Peras round number.

objectIds, responseToIds In its simplest form, a list of Peras round numbers, and the identity function.
As an optimization, compact/compressed representations are possible, for example

• a round followed by a bitset for the subsequent rounds, indicating whether a certificate is
present, or

• a round followed by a run-length encoding of the subsequent rounds. This is motivated by
the observation that in Peras, rounds are (not) successful in larger runs, either because all
rounds are successful due to sufficient honest votes, and if not, a lengthy cooldown period
(with no successful rounds to due honest abstention) of unsuccessful rounds.

The responseToIds function is then decoding this compact representation.
11https://github.com/IntersectMBO/ouroboros-network/pull/4887
12We find this motivation in other parts of Ouroboros. For instance, as part of the Cardano Genesis implementation, we ensured

that both block bodies and headers were downloaded only once.[Bac+25]
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initialPayload A Peras round number.
Partially synced/recently caught-up peers can use this to receive certificates starting from the
first round for which they do not yet have a certificate, avoiding the transfer of older, already-
downloaded data.13

An honest server answers requests for more round numbers by sending those for which it has a
certificate in ascending order, until the client is caught-up, in which case the server blocks (or returns
empty results) until it observes new certificates arising from successful Peras voting rounds.14 At any
time, it will serve the certificates corresponding to unacknowledged round numbers, while enforcing
an upper bound on the this quantity.

This design leverages the fact that there can only be at most one certificate per round, which allows
us to elide data like the point of the block that is being certified/boosted, justifying the use of round
numbers as certificate IDs. In particular, it does notmatterwhowe download a certificate for a particular
round from.

We now give a high-level description of the envisioned dynamics of this protocol.

• Consider a syncing node via Ouroboros Genesis which still needs to catch up a significant part
of the historical chain. The node continually requests sizeable chunks of round numbers via
MsgRequestObjIdsNonBlocking for each peers. For every round number that is advertised by at
least one peer, the corresponding certificates are downloaded from the peers via MsgRequestObjs
(as a first step, a singular designated peer which a simple batching strategy could be used; but
more sophisticated strategies, similar to the existing BlockFetch logic are conceivable). The client
uses protocol-level pipelining to avoid round-trip delays and to make full use of the available
bandwidth.

• As the node is eventually done catching up, its peers run out of certificates to serve, and the node
will start sending MsgRequestObjIdsBlocking instead.15 Usually, it will receive one new round
number per peer every perasRoundSlots slots, but given that the node now participates in vote
diffusion, it is not necessary to actually download the certificate.
An exception is the scenario where the node has downloaded all votes for a round without observ-
ing a quorum, but still received this round number via the certificate diffusion protocol. In this
case, the node will download the certificate via certificate diffusion. This can only happen due to
adversarial activity like vote equivocation, see appendix A.2.3.

Clients can ensure progress in this protocol w.r.t. adversarial servers by enforcing appropriate time-
outs and a monotonicity property on the advertised round numbers:

a) Prompt delivery of requested certificates can be ensured by protocol-level timeouts, or via a more
elaborate mechanism like a leaky token bucket as used in the Cardano Genesis implementation
[Bac+25] which handles temporary latency spikes more gracefully.

b) The sequence of round numbers sent by the server must increase almost monotonically, as honest
nodes (acting as servers) can observe the certificate for round r before the one for round r− 1 in
edge cases, see section 2.2.6.

13This is conceptually analogous to MsgFindIntersect in the ChainSync protocol.
14The resulting sequence of round numbers is almost monotonically increasing, with a possible exception once the client has

(almost) caught-up, see section 2.2.6.
15In particular, an incomplete/empty reply to MsgRequestObjIdsNonBlocking is analogous to MsgAwaitReply in the ChainSync

protocol.
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This almost-monotonicity requirement can be enforced implicitly by an appropriate leaky token
bucket (also see a)) via an approach analogous to the “Limit on Patience”, the mechanism used in
the Cardano Genesis implementation [Bac+25] to guarantee progress in ChainSync while syncing.
In short, the idea is to make sure that the server sends round numbers higher than anything it
has sent before at a minimum rate on average, or that the server advertises that it has no more
certificates. An honest server will have no trouble in doing that, as it will only ever send round
numbers in non-monotonic order when the client is almost caught-up. Once it is caught-up, this
mechanism can be disabled, just like the Limit on Patience.

Finally, we note that in order to conclude that a round does have a corresponding certificate, it is
enough to download such a cert from any peer, while concluding that there is no certificate for a round
r requires information from all peers (in the form of advertising a certificate for a round sufficiently
larger than r as per b), or by the peer indicating that they have no more certificates at the moment).

2.6.3 Alternatives
We briefly discuss two alternatives to the design of vote and certificate diffusion presented above.

• One could combine vote and certificate diffusion into one custom protocol. This would allow for
some optimizations, such as responding with a certificate when a client asks for a vote that it
subsumes, and could make certain interactions between the vote and certificate clients explicit.
However, the separation of votes and certificates actually allows the individual protocols to be sim-
pler and more focused, and the aforementioned optimization does not seem relevant in practice,
in particular as one still needs synchronization between the clients of different peers.
Also, there is an advantage in reusing object-diffusion mini-protocol (section 2.5) due to its sim-
ilarity to the existing Tx-Submission protocol, and the planned use for Mithril [Ray+24] and
Ouroboros Leios.

• Certificate diffusion could use two protocols similar to how chains are diffused in Cardano. Con-
cretely, the first protocol would be similar to ChainSync and diffuse just certificate IDs (i.e. round
numbers) and the second protocol would be an instantiation of BlockFetch with certificate IDs
instead of block points and certificates instead of blocks.
However, this approach seems overly complicated for the purpose of certificate diffusion. The pri-
mary motivation for having separate ChainSync and BlockFetch protocols is the header-body split
[Cou+20], and ChainSync is specifically designed for stateful chain following, whereas certificates
do not have an inherent chain structure (despite voting for blocks on a block chain).

2.7 Using chain weight instead of chain length
Any certified block receives extra weight corresponding to perasBoost per certificate.16 Various com-
ponents that currently consider chain length must instead consider chain weight.

Chain selection Most prominently, chain selection must no longer select the longest, but instead the
weightiest chain, using all currently available certificates. In particular, the selection of a node

16Usually, blocks will be boosted by at most one certificate, but it is possible for the same block to be boosted by multiple
certificates, for example if there is no active slot within a Peras round, which happens with probability (1− asc)perasRoundSlots ≈
1% for asc = 1/20 and perasRoundSlots = 90.
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can now additionally change solely due to the emergence of a new certificate, without any new
blocks.

Volatile vs. immutable chain The node maintains its selection as an immutable prefix and a volatile
suffix, where only the latter is subject to rollbacks. Without Peras, the volatile suffix is defined to
be the kcp most recent blocks. With Peras, it is instead defined to be the largest suffix containing
blocks of weight at least kcp.17

When Peras is not in a cooldown phase, this means that the length of the volatile suffix decreases
from kcp blocks to ⌈

kcp

1 + perasBoost
perasRoundSlots·asc

⌉
= 499

blocks in expectation, assuming no adversary and full honest participation, aswell as perasBoost =

15, asc = 1/20 and kcp = 2160.
As a consequence, and because we only need to store ledger states for each volatile block and the
immutable tip, fewer ledger states need to be stored in that case. However, this expected to only
result in a small gain in efficiency, as ledger states corresponding to subsequent blocks only differ
by a small amount in relation to the total size, and existing implementations exploit this fact by
using implicit structural sharing or by explicitly maintaining these diffs.

Ouroboros Genesis rule The Cardano Genesis implementation [Bac+25] performs density compar-
isons between competing header chains while syncing. With Peras, this needs to be modified to
use the weighted density instead (cf. section 2.4 and appendix A.2.2).
Concretely, the Genesis Density Disconnection governor needs to be revised to become aware of
certificates. In general, disconnecting from one of two peers offering competing historical chains
requires definite knowledge of all certificates in rounds that can boost a block in the first sgen slots
after their intersection. We achieve this via the perasBlockMaxSlots parameter (establishing an
upper bound on themaximum relative age of a block that a certificate can boost) and the discussion
of progress of certificate diffusion in section 2.6.2.

BlockFetch decision logic TheBlockFetch decision logic is responsible for downloading blocks corre-
sponding to candidate header chains that are preferable to the current selection. The comparison
between candidate header chains and the current selection needs to take weight into account.

Hard Fork Combinator The Hard Fork Combinator (HFC) is Cardano’s mechanism for transparently
handling transitions between different Cardano eras. Before enacting an era transition decided
by on-chain governance, the HFC requires at least kcp blocks after the voting deadline, i.e. the last
slot that could still affect the on-chain governance.18 This mechanism is called block counting.
Relying on Praos Chain Growth, these kcp blocks must arise in Tcp slots. In Peras however, Chain
Growth guarantees instead that Tcp slots contain blocks having weight of at least kcp blocks on
any chain, which does not imply that there actually are kcp blocks. See appendix A.1.3 for more
details on how the adversary can cause the chain to be of high weight, but low (unweighted)
density.

17Note that it is acceptable (but overly conservative) to not capitalize on this observation, and still consider the last kcp blocks
to be volatile.

18See https://ouroboros-consensus.cardano.intersectmbo.org/docs/for-developers/CivicTime for more context.
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As block counting is a part of ledger validation, it is not possible to directly change this rule to
use weight instead, as the set of certificates is not availabe in this context, and it is not desirable
to make block validation dependent on external data like certificates.
It is conceivable that a more fine-grained analysis could result in the probability to have less than
kcp blocks (or an appropriately increased quantity) to still be acceptably low for this purpose,
such that the HFC can continue to use block counting. We also not that block counting has been
under closer scrutiny and been subject of discussions to potentially replace it for other, unrelated
reasons.

2.8 Vote storage (PerasVoteDB)
The node needs to store votes for the current round (cf. section 2.2.5) in order to observe a quorum, and
to diffuse these votes to downstream peers while the round is still ongoing even after a quorum has
been observed.

• As soon as the PerasVoteDB contains votes with weight of at least perasQuorum, it starts aggre-
gating these votes into a certificate and adds it to the PerasCertDB (section 2.9).

• At the beginning of a Peras round r, all votes prior to r are deleted from the PerasVoteDB.

We propose to store these votes in memory only; not persisting its state to disk. Restarting a node
is realistically going to take longer than perasRoundSlots, so any persisted votes would become stale
immediately after a restart.

2.9 Certificate storage (PerasCertDB)

2.9.1 In-memory storage of recent certificates
Various components of the node need quick access to all certificates applying to a particular candidate
chain in order to compute its weight, cf. section 2.7. In addition, the Peras aspect of the block minting
logic (section 2.10.1) needs access to the most recent certificate.

We propose to maintain an in-memory cache in the PerasCertDB of all certificates that can apply
to a block that the node could select. Older certificates (e.g. those with a round that ends before the
tip slot of the immutable chain) can be garbage-collected from this in-memory cache, which bounds
the size of the cache. Therefore, as there is at most one certificate per round, this cache contains at
most ⌈Tcp/perasRoundSlots⌉ = 1440 certificates, so in total 28.8MB for the proposed parameters
(section 2.1).

2.9.2 On-disk storage of historical certificates
Nodes serving the historical chain need to retain all past certificates in order to provide them to peers
syncing from them via Ouroboros Genesis, see appendix A.2.2. Naturally, due to its unbounded size
(linear to the age of the chain), these certificates need to be stored on disk.

We store certificates on disk that are boosting a block on the immutable chain.19 Therefore, the
on-disk store is append-only, and all certificates stored in it are immutable.

19The only certificates that do not have this property must be from rounds shortly before a cooldown period, so they are rather
rare.
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These properties are similar to those of the ImmutableDB in the cardano-node implementation,
[VWC20, chapter 8], and the on-disk storage has similar requirements:

a) The store must efficiently add new certificates, but it is acceptable if recently added certificates
are lost on a crash, as they can be re-downloaded.

b) The store must provide performant functionality to implement the server side of certificate diffu-
sion section 2.6.2. Concretely, we require efficient lookups and streaming of certificates indexed
by their round number.

A simplified variant of the ImmutableDB as implemented in the cardano-node fulfills these requirements,
as does any standard key-value store (which usually provide many additional features/guarantees that
are not strictly required here).

2.10 Minting

2.10.1 Voting component (PerasVoteMint)
At the beginning of every Peras round, a pool needs wake up and perform the following tasks in order:

a) Check if it is eligible for a seat in the Peras committee of that round. If not, exit here.
If the node is currently syncing, thismight be impossible to determine, just as for the blockminting
logic. In this case, the node does not vote.

b) Determine the candidate block B to potentially vote for. If none20, exit here.
In the pre-alpha version of Peras described in this document, this is defined by a simple rule (the
latest block on the current selection that is at least perasBlockMinSlots, but atmost perasBlockMaxSlots
old compared to the first slot of the current round). Future versions of the Peras protocol might
include a more sophisticated pre-agreement rule here.

c) Check if it should participate in voting this round, using [Bai+25, Rules for voting in a round]. If
none, exit here.
This requires access to the most recent certificate, which is available via the PerasVoteDB (sec-
tion 2.8), and the most recent certificate stored on the current selection, which is stored in the
corresponding tip ledger state.
Note that the node might not vote in a round, but continue voting in the next round, see ap-
pendix A.2.1 for details. However, usually, honest nodes will only stop voting when the protocol
enters a cooldown period.

d) Cast a vote for B and add it to the PerasCertDB (section 2.8), which will cause it to be diffused to
the downstream peers.

2.10.2 Modification to the block minting logic
Honest nodes need to include a certificate on chain when the protocol is in a cooldown period in order
to coordinate the end of that cooldown period. We refer to [Bai+25, Block creation] for the precise
condition. This extra check is computationally trivial.

20This can only happen when the chain is very sparse.
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As mentioned in section 2.3, the size of the certificate count towards the maximum block body size,
so logic for selecting transactions to include in the block needs to be appropriately tuned to select fewer
transactions in that case.

2.11 Node-to-client protocols
In order to make use of Peras and its improved settlement guarantees under optimistic conditions, ap-
plications need to monitor whether or how many of the block containing their transaction of interest
and its descendants are boosted via a Peras certificate.

For this, we propose to run certificate diffusion (section 2.6.2) also as a node-to-client protocol, such
that clients can process these themselves for their use case. For example, such a separate service can
provide an easy-to-use API that can answer queries about recent blocks with concrete settlement prob-
abilities based on the observed certificates.

We do not see a strong use case for exposing votes as a node-to-client protocol; monitoring tools for
Peras can likely use the node-to-node protocol directly.
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Chapter 3

Interactions with other features

We provide a preliminary discussion of the interactions of Peras with Mithril1 and Ouroboros Leios2.

3.1 Mithril
Mithril is a protocol for generating stake-based threshold multi-signatures for certain entities related
the Cardano blockchain, for example the stake distribution, the node database or even individual trans-
actions.

3.1.1 Bootstrapping Peras certificates
Mithril1 is often used to bootstrap a node by fetching a pre-synced chain database which has been signed
via Mithril instead of syncing manually from other nodes. Given that Peras is adding certificates to the
chain database, we now sketch how these could be handled by Mithril.

• Applications that are not interested to serve the chain to other nodes themselves3 do not need
Peras certificates, so Mithril does already work for this use case without any additional modifica-
tions.

• Nodes that do want/need to serve the historical chain to other nodes (e.g., pools) need to obtain
all historical certificates. This is non-trivial, as there can be many different valid certificates for
the same block in some round, and even further, honest nodes do not necessarily have the exact
same collection of historical certificates, see section 2.2.2. This is in contrast to the immutable
chain, on which all honest peers agree on eventually up to a specific slot.
It seems plausibly possible to us to work around these complications, but it requires further
thought and discussion with the Mithril team.

3.1.2 Reusing votes across Peras and Mithril
Just like Mithril, Peras needs to diffuse votes in order to create certificate, which is a stake-based thresh-
old multi-signature for the block that is being voted for.4 Conceptually, it is therefore possible to use
the same votes for Peras and for Mithril, adding the data to be signed for both applications to individual
votes (concretely, the point of the block that Peras is voting for, and e.g. the hash of a (stable) stake
distribution for Mithril). Peras and Mithril would aggregate these votes into certificates independently
from each other.

1https://mithril.network/
2https://leios.cardano-scaling.org/
3We note that such nodes might also benefit from other optimizations, such as eliding the transaction signatures from blocks

(“segregated witness”).
4The Mithril team intends to use a protocol very similar to Tx-Submission, see [Ray+24].
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The main benefit of this approach is that all pools would automatically and at essentially no extra
cost for themselves on top of Peras (assuming that the data that Mithril requires to be signed is suffi-
ciently lightweight, which should be the case for e.g. stake distributions) participate in Mithril voting.
In particular, no bandwidth is wasted for duplicate

Of course, this approach requires that Peras and Mithril use the same or compatible cryptography
for votes and certificates. The current design for votes and certificates in Peras [Bus25] is different from
Mithril’s certificates [CK24]; however, we understand that there is an effort to use a unified approach of
stake-based threshold multi-signatures across various Cardano-related projects, in particular for Peras
and Mithril.

Another complication is the existence of Peras cooldown periods. As presented in the Peras CIP
[Bai+25] and this document, honest nodes stop voting during such a cooldown period, which, even if
rare, would also disable Mithril as a side effect, which is undesirable. A natural mitigation is to let nodes
still vote even during Peras cooldown periods, but indicate in the vote that it must not be considered as
a Peras vote, only as a Mithril vote.

In general, the main drawback of this idea is that it introduces coupling between components that
are logically separate, and hence imposes accidental complexity that needs to be weighed against the
aforementioned advantages. In particular, this coupling makes a separate evolution of Peras and Mithril
more difficult.

3.2 Ouroboros Leios
Ouroboros Leios2 is a high-throughput protocol for Cardano.

3.2.1 Combining Peras and Mithril
From a very high level point of view, Peras and Leios are orthogonal features: Leios is a significant
change to the protocol with many new kinds of blocks as well as votes and certificates. However, in
the end Leios, still establishes a chain made out of ranking blocks that follows the longest chain rule as
in Praos. Peras can still be applied to this chain (i.e. votes would be case for ranking blocks), providing
faster settlement under optimistic conditions.

In other words, interacting with the Cardano blockchain via a transaction involves two steps:

a) First, the transaction needs to be propagated through the network and be included in a block.

b) Second, the block needs to be settled with a probability appropriate for the concrete use case.

Leios accelerates step a) (by increasing throughput), while Peras speeds up step b) (by boosting the block
or one of its descendants).

On a lower level, Peras and Leios fundamentally compete for bandwidth in the system (as Leios is
all about making full use of it, in contrast to Praos). The Leios innovation time is currently working
on elaborate realistic simulations of Leios to assess its dynamics and performance profiles. Enriching
these simulations with Peras (concretely, its vote diffusion) can provide further insights into this tradeoff.
However, we note that a future version of Perasmight incorporate a dedicated pre-agreement mechanism
of unclear specifics.

Overall, there is no explicit dependency between Peras and Leios, but rather common dependencies
like the work on a cryptographic scheme for votes and certificates. Moreover, Leios will likely also use
a variant of Tx-Submission do diffuse its various kinds of new entities, which provides an opportunity
for collaboration.

25



3.2.2 Reusing votes
Like Peras andMithril, Leios alsomakes use of stake-based thresholdmulti-signatures (in order to certify
data availability), and needs to diffuse votes for this purpose. Similar to the discussion in section 3.1.2,
it is therefore in principle conceivable to share these votes between Peras and Leios (and Mithril), po-
tentially mitigating the competition for bandwidth.

At present, it is unclear whether or how Peras could be more tightly integrated with Leios, such as
voting for input blocks or directly reusing the endorsement certificates for faster finality. It seems likely
that any such approach would have to differ signficantly from Peras in its current form.
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Chapter 4

Outline implementation plan

We sketch a possible implementation plan to integrate the design presented in this document into
cardano-node, the Haskell implementation of a Cardano node. However, similar considerations would
plausibly apply to other implementations.

We exclude the implementation of the underlying cryptography used for votes and certificates from
this discussion, and assume the availability of appropriate Haskell bindings. In particular, the scheme
described in [Bus25] requires pools to register new keys, which necessitates appropriate tooling to
generate and manage those.

4.1 Prototype without historical certificates
As a first step, Peras can be implemented without storing any historical certificates. This prevents
syncing via Ouroboros Genesis with reduced trust assumptions, but syncing from trusted peers is still
possible. In this form, Peras can already be used to run a testnet to start to empirically explore and test
the implementation in a real-world environment.

Such a prototype involves the following work items.

a) Implementation of votes and certificates (section 2.2), the associated validation logic and serial-
ization.

b) Changes to the Cardano Ledger to include certificates in block bodies (section 2.3).
We propose tomake the Ledger onlyminimally aware of certificates, as they aremorally a Consen-
sus concern and only included in block bodies due to their size. More concretely, the Ledger logic
would consider certificates to be opaque objects, with the actual validation logic being provided
by the Consensus layer when it invokes the ledger rules.
The new protocol parameters (section 2.1) which are subject to governance can initially be hard-
coded, but we expect it to be a routine operation for the Ledger team to add them to a new Ledger
era.

c) Implementation of the (in-memory) PerasVoteDB (section 2.8) and associated vote minting logic
(section 2.10.1) and vote diffusion (section 2.6.1).
This requires defining the object diffusion mini-protocol using the typed-protocols library, and
implementing appropriate client and server logic. The client logic is more complicated, and can
initially download all votes for every peer (similar to how Tx-Submission worked before recent
work by the Network team1).

d) The in-memory part of the PerasCertDB (section 2.9).

e) The (straightforward)modification of the blockminting logic to include certificates (section 2.10.2).
1https://github.com/IntersectMBO/ouroboros-network/pull/4887
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f) Support for efficiently computing the weight of chains, and making use of this functionality in
chain selection and the BlockFetch decision logic (section 2.7).

g) Integration with the Hard Fork Combinator, see section 2.7.

h) Optionally, a restricted version of certificate diffusion that does not support receiving historical
certificates (section 2.6.2). We recall that certificate diffusion between caught-up nodes is only
necessary in certain scenarios involving adversarial activity. For the purpose of using this proto-
type in a testnet, it therefore is possible to elide this step and instead implement it as part of fully
implementing certificate diffusion in section 4.2.

This work largely falls into the scope of the Consensus team, with interactions with the Ledger team
(b)) and the Network team (c)).

4.2 Adding certificate diffusion and historical certificates for
Ouroboros Genesis

To support syncing via Ouroboros Genesis, the following additional steps are necessary.

a) Implementation of the on-disk part of the PerasCertDB (section 2.9).
For a straightforward initial implementation, we recommend to use a key-value store, such as
LMDB, which is currently used by the UTxO-HD project to store the UTxO map on disk, or lsm-
tree2, which is currently developed by Well-Typed as a replacement for LMDB in the aforemen-
tioned use case. We note the use cases of storing the UTxO map on disk and the PerasCertDB are
pretty different, so certain features of these libraries that are important for the former case (such
has supporting random access write-heavy workloads) are not relevant for us.
Alternatively, adapting and simplifying3 the existing implementation of the ImmutableDB can be
considered.

b) Full implementation of certificate diffusion (section 2.6.2).

c) Update the Cardano Genesis implementation [Bac+25] to compare competing header chains using
their weight (instead of their unweighted density) (section 2.7).
Concretely, this requires changes to the Genesis Density Disconnection governor, the component
that disconnects peers who offer a header chain that is definitely less dense/has less weight than
another one.

d) Adjust chain selection to ensure that certificate acquisition does not fall behind block adoption
(section 2.4) as part of the “duty to remember” certificates.

4.3 Discussion of implementing Peras externally to the node
The implementation approach described in the preceding sections assumes that Peras will be directly
integrated into the existing node. In this section, we briefly discuss to what extent Peras could be
implemented externally as a separate component. This is motivated by Cardano features like Mithril

2https://github.com/IntersectMBO/lsm-tree
3For example, complications due to epoch boundary blocks are not relevant for the PerasCertDB.
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(section 3.1) being implemented externally (using the Extensible Ouroboros Network Diffusion Stack4),
and Project Caryatid5, a prototype for a potential node architecture based on microservices.

We note that the interaction between the core node component and an external Peras component
must be bidirectional, as the validity of votes and certificates and the voting logic are determined by the
current ledger state (maintained by the node), and in turn, these certificates (from the Peras component)
fundamentally affect the chain selection process of the node. Therefore, implementing Peras externally
still requires non-trivial changes to the core node. This stands in contrast to e.g. Mithril, where the
Mithril component requires certain data from the node (e.g. the stake distribution), but the node does
not have to be aware of Mithril.

In other words, the degree of coupling between a Peras component and the node will be relatively
high, contrary to the usual requirement of loose coupling in a microservice architecture. Therefore, we
anticipate that an implementation that integrates Peras directly into the existing node will be quicker
to execute and easier to maintain.

Finally, we sketch how Peras could fit into a hypothetical future microservice architecture for the
node with fine-grained components. In particular, assume the existence of a dedicated Consensus com-
ponent responsible for e.g. chain selection and block minting, which defers to other components for
e.g. block validation and maintenance of the transaction mempool. (This is similar to the separation of
consensus and execution clients in Ethereum6.) In this case, almost all of the changes mandated by Peras
would only affect this Consensus component, with the exception of certificates contained in blocks to
coordinate the end of a cooldown period.

4Also known under the name “reusable diffusion”, cf. https://github.com/IntersectMBO/ouroboros-network/wiki/
Reusable-Diffusion-Investigation

5https://github.com/input-output-hk/caryatid
6https://ethereum.org/en/developers/docs/nodes-and-clients/
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Chapter 5

Testing

Wepresent a series of tests for Peras to ensure its functionalitywhen being implemented into cardano-node,
the Haskell implementation, both under optimistic and adversarial conditions.

We exclude considerations of testing the cryptographic scheme underlying votes and certificates.

5.1 Component-level tests
We describe how the components of the Peras architecture (both new and modified ones) can be tested.

• The IOE Consensus team is currently collaborating with the IOE Formal Methods team in estab-
lishing conformance tests for header validation, comparing the actual implementation to the formal
specification in Agda [CBV24]. We advise to consider similar tests for ensuring the correctness
of vote and certificate validation.

• To test the enriched chain selection algorithm which accounts for weighted chains via boosted
blocks, it is natural tomodify the existing statemachine test in lock-step style, which uses property
tests to ensure the equivalence to a simple model implementation.
Similarly, we recommend state machine tests for the PerasVoteDB and the PerasCertDB. In case
of the latter, explicit fault injection can be used to check for appropriate behavior under e.g. disk
corruption that are otherwise hard to test.

• The modification to the Cardano Genesis implementation (using weight to compare candidate
chains) can be checked by adapting the existing extensive test suite for Genesis. For example, the
Genesis tests rely on generating a block tree that indicates all possible chains that exist for this
particular test run, and could hence be served via a (randomly generated) adversarial strategy.
For Peras, it is necessary to generate weighted block trees such that the new logic is exercised
non-trivially.

5.2 Simulation tests with generated environments
We propose to simulate the behavior of an honest Peras node in a generated environment, in order to
catch regressions in the overall dynamics of the system, as well as to exhibit scenarios that are hard to
test due to requiring complicated setup and tooling in an integration test.

• An optimistic environment where all nodes are behaving honestly. In this case, all Peras rounds
must be successful.

• Temporarily decreased participation in voting, leading to unsuccessful rounds. Here, the node
must pause voting for some time, potentially include a certificate on chain, and once the cooldown
period ends, resume again.
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• Environments involving adversarial behavior of pools with a given amount of stake. These may
either be specific strategies from a pre-defined list (such as equivocation attacks), or randomly
generated “chaotic” adversaries.
Here, the properties to test for are the core guarantees of the system, i.e. safety and liveness.

• The Peras conformance tests1 provided by the Peras Innovation team also constitute an environ-
ment to test against. In this case, success is decided by the conformance suite (backed by a model
implementation).
This requires an appropriate layer of glue (for example, to translate between the pull-based mini-
protocols and the push-based replies expected by the conformance test).

These simulations can leverage the io-sim2 library for deterministic tests even in the presence of
concurrency and time that is inherent in such a context.

5.3 Integration tests and benchmarks
The IOECardano Performance & Tracing teammaintains an elaborate cluster benchmarking setup using
a variety of high-load scenarios. It is used to validate the performance of the node, in particular by
catching regressions. Naturally, this setup can be extended to measure the impact of Peras on key
metrics such as block diffusion time and resource usage per node, while monitoring that Peras behaves
as expected, i.e. that all Peras rounds are successful (due to the absence of an adversary).

We also recommend to consider setting up a dedicated testnet for Peras, similar to the past “San-
chonet” whose purpose was to assess the in-progress implementation of Voltaire governance. This
enables an early experimentation environment for pool operators as well as developers wanting to in-
tegrate the settlement guarantees of Peras into their application.

1https://github.com/input-output-hk/peras-design/blob/63e4224c4f6c286c58121acabe366d9be1d90998/
peras-simulation/Conformance.md

2https://github.com/input-output-hk/io-sim
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Chapter 6

Identified risks and opportunities

We have identified the following risks inherent in the protocol that we do not see how to address at the
implementation level:

• An adversary can include useless certificates on chain while the system is not in a cooldown
period, cf. section 2.3. This is not a fatal flaw, andmight be of limited relevance if the cryptographic
scheme for Peras allows for very small and cheap-to-validate certificates.

• The pre-alpha version of Peras is characterized by the lack of a dedicated pre-agreement mecha-
nism for avoiding cooldown periods as much as possible. We stress that this implies that adver-
saries with less than 25% of the stake can cause (long!) cooldown periods with decent probability,
cf. appendix A.1.2.
The additional implementation complexity of a pre-agreement mechanism has not been analyzed
so far. Therefore, we recommend to conduct further research to determine if the consequences of
the lack of pre-agreement are acceptable for the anticipated users of Peras.

• In its current form, there is no direct monetary incentive for pool operators to participate in Peras.
This is relevant as low honest participation in voting (even without any adversary) causes Peras to
be ineffective due to its lengthy cooldown periods on unsuccessful rounds. It is not obvious how
to realize a reward mechanism for voting in general as there is no on-chain track record of who
participated in Peras voting. Even then, further research in the form of a game-theoretic analysis
would be required.
We propose to transparently communicate this fact to pool operators to gather feedback.

Finally, we highlight an opportunity (discussed with the Peras research team) for further study of
the Peras protocol that could avoid a significant chunk of the work necessary to implement Peras. Con-
cretely, if such research results in the conclusion that it is possible to instantiate Peras in such a way
that it is acceptable to perform unweighted Genesis density comparisons instead of weighted ones, it
is not necessary to store historical certificates, cf. section 2.4. Here, by “acceptable” we mean that the
resulting loss in security (for example due to attacks as described in appendix A.1.3) is negligible. In that
case, the implementation steps described in section 4.2 would not be required anymore. In particular,
Peras would not require any additional disk space.

However, since the outcome of this (unstarted) research is unclear, both in terms of its outcome
and the time frame required, the architecture presented in this document does not make use of this
hypothetical simplifying assumption.
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Appendix A

Attack scenarios

The goal of this appendix is to give an overview of various attacks on Peras, which either motivate a
Peras certain rule/requirement or highlight what we can expect from sufficiently strong attacker within
our margin of security.

A.1 Attacks against Peras
Here, we list attacks that a sufficiently strong adversary (within the margin of security) can execute
and degrade the user experience this way (for example, due to reduced throughput or longer settlement
times), but which do not threaten the core security properties of the system.

A.1.1 Abstaining during voting
An adversary with α stake will have α · perasN votes on average, so if they simply abstain, the honest
nodes will likely fail to reach quorum even when they all vote for the same block when α ≥ 1 −
perasQuorumperasN = 1/4 for perasQuorum = 3/4 · perasN. Therefore, Peras doesn’t provide fast
settlement in the presence of an adversary with α ≥ 25%, which is expected.

As usual, this is assuming full honest participation; smaller participation levels can only tolerate
proportionally weaker adversaries.

Additionally, this attack (and others that are about preventing a quorum) gets more effective if the
cryptographic scheme used for certificates requires votes of weight larger than perasQuorum to certify
a quorum, which is for example the case for ALBA due to its np/nf parameters [Cha+24].

A.1.2 Honest vote splitting
In the pre-alpha version of Peras, honest nodes vote for the newest block on their selection that is at
least perasBlockMinSlots slots old.1 It is relatively easy for an adversary to cause different honest nodes
to vote for different blocks.

For example, this allows an adversary with α < 0.25 to prevent quorum formation with decent
probability (which they couldn’t do by simply abstaining) by splitting the honest votes such that neither
block reaches quorum, causing the system to enter a cooldown period. Future versions of Peras will
improve on this front by adding a dedicated pre-agreement mechanism that avoids a cooldown in this
scenario.

Write tip(C) for the tip of a chain C , and trunc(s, C) for the prefix of C up until (but excluding)
slot s.

Concretely, consider the voting phase at the beginning of round r starting in slot s, with all honest
nodes having selected chain C1 just before.

1There are potential variants of this rule (such as choosing the tip of the best chain made out of blocks that at least
perasBlockMinSlots slots old) that might mitigate the attack discussed here in certain scenarios, but they do not change the
overall picture.
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Suppose that the adversary with stake α has a chain C2 that is preferrable to C1, and D1 ̸= D2

where
Di = tip(trunc(s− perasBlockMinSlots, Ci))

for i ∈ {1, 2}. If the adversary now diffuses C2 to only a subset of the honest nodes right before r

starts (such that the remaining honest nodes only receive C2 after r began), these nodes will vote for
D2, while the rest will vote for D1.

We can calculate a lower bound on the probability that an adversary has such a chainC2 by consider-
ing a particular outcome of the leader schedule that guarantees the existence of C2 when the adversary
simply abstains while honest chain is growing before round r.

a) There is at least one adversarial active slot in the interval (h, s − perasBlockMinSlots) where h
is the last honest active slot before s− perasBlockMinSlots.

b) There are at notmore honest than adversarial active slots in the interval [s−perasBlockMinSlots, s).

Condition a) guarantees that D1 ̸= D2, and condition b) makes sure that C2 is preferrable to C1.
We stress that this is not the only scenario where the attack can be executed; for example, we have

not considered tiebreakers and honest short forks.

Lemma A.1.1. For an adversary with stake α the probability that the events a) and b) occur before some
Peras round is given by

P (H ≤ A) · P (A′ ≥ 1)

whereH ∼ Binom(L, ϕ(1−α)),A ∼ Binom(L, ϕ(α)),A′ ∼ Binom(H ′, ϕ(α)),H ′ ∼ Geom(ϕ(1−α))2,
and where L = perasBlockMinSlots and ϕ(σ) = 1− (1− asc)σ [Dav+18, (1)].

Proof. Note that a) and b) are independent as they refer to disjoint sets of slots.
The number of active slots out of n total slots for a party with stake σ is binomially distributed via

Binom(n, ϕ(σ)), so P (“a)”) = P (H ≤ A) is clear.
The number of successive inactive slots until an active slot for a party with stake σ is geomet-

rically distributed via Geom(ϕ(σ)), so H ′ counts the size of the interval (h, s − L), and therefore
A′ ∼ Binom(H ′, ϕ(α)) counts the number of adversarial active slots in that interval. Thus, P (“b)”) =
P (A′ ≥ 1).

In lemmaA.1.1, we assume that the gapH ′, i.e. the length of the interval (h, s−perasBlockMinSlots),
is sampled geometrically due to the leader schedule. However, it can also be instructive to set it to a
concrete value (letting H ′ have a one-point distribution), especially if an adversary could force a long
gap in some other way.

We plot the propabilities of lemmaA.1.1 for realistic parameters in fig. A.1. We observe that for small
values for perasBlockMinSlots, even relatively weak adversaries can execute a vote splitting attack
rather frequently. This is relevant in particular as it allows them to trigger a cooldown phase.

A.1.3 Density reduction via boost-induced rollbacks
We now describe an adversarial strategy that results in the honest historical chain to have low density,
but high weight, i.e. in the extreme case, there is one boosted block per Peras round, with every voting
round being successful. In that case, a simple (private) fork purely made out of adversarial blocks has a
good chance to have higher density (but significantly lower weight) than the honest chain.

2Here, we use the convention of counting the number of failures until the first success.
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FiguRe A.1: Probabilities (lower bounds) for lemma A.1.1 for realistic parameters. The right plot assumes
a slot length of one second and perasRoundSlots = 90.

See appendix A.2.2 for how this attack influences the Peras design.
Consider a Peras round r starting in slot s. During round r, the adversary (with stake α) does not

diffuse any votes or blocks until shortly before the end of round r in slot s + perasRoundSlots. Let C
be the best chain that any honest node has selected in slot s + perasRoundSlots − 1. The adversary
arranges it such that during the voting phase of round r, no quorum is reached without the adversarial
votes, and further, that honest votes with weight at most perasQuorum−α are cast for a block B that is
not on C . The idea now is for the adversary to diffuse its α · perasN votes for B near the end of round r

such that round r is considered successful andB receives a boost. Then, under reasonable assumptions,
the chain ending in B is preferrable to C (as the latter doesn’t contain a block that was boosted during
round r), so the adversary succeeded in creating a low density but high weight chain during round r.

Let us consider concretely how and under what conditions an attacker can execute this attack.

a) To start the attack, the attacker needs to prevent a quorum out of honest votes during round r,
and needs to ensure that votes of weight at least perasQuorum − α are cast for a block that the
honest nodes will not build upon during round r.
One way to accomplish this is to execute an honest vote splitting attack, see appendix A.1.2.
If α < 0.25, then the adversary must proceed exactly as described there, in particular, diffuse
an appropriate chain right before round r starts, in order to prevent a quorum purely made out
of honest votes. On the other hande, if α ≥ 0.25, preventing an honest quorum is trivial, see
appendix A.1.1, so the adversary also has the option to diffuse the better chain even after r started.

b) The round length perasRoundSlots must not be too long in relation to perasBoost, i.e.

perasBoost ≥ ϕ(1− α) · perasRoundSlots .

Otherwise, the honest chain built during round r might have more weight than the block B (plus
additional adversarial blocks on top ofB) despite not having a boost. The attacker can still execute
a less effective version of the attack by diffusing their votes signifcantly before the end of round
r.
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However, for realistic/useful Cardano mainnet parameters, such as perasRoundSlots = 90 and
perasBoost = 15, this is not a problem for the adversary.

c) Once an adversary successfully performed the attack in a round, they can repeat it with good
probability like this. The idea is for the adversary to mint two blocksB1, B2 on top ofB between
slot s− perasBlockMinSlots and s+ perasRoundSlots− perasBlockMinSlots, where B1 is pre-
ferrable to B2. Then, they execute an honest vote splitting attack between B1 and B2 for round
r + 1, such that neither block reaches quorum just due to honest votes, but such that B2 votes
having weight perasQuorum− α at least. This is exactly the necessary setup to continue with the
attack.
The number of elections of a party with stake σ within n slots is given by

En,σ ∼ Pois(−nσ log(1− asc))

in the limiting case when the stake is distributed across infinitely many stake pools. Therefore,
the probability that the adversary gets two elections in the aforementioned slot interval of size
perasRoundSlots is bounded by P (EperasRoundSlots,α ≥ 2). For example, for perasRoundSlots =

90 and α = 0.4, this evaluates to 55.09%.
The number of successive successful rounds is hence geometrically distributed. Note that all
blocks added to the chain in the meantime are adversarial, hence impacting chain quality.3

These probabilities seem sufficiently large to us to take this attack seriously. Amore detailed analysis
(potentially simulating the resulting Markov chain) is out-of-scope for this document.

A.2 Attacks motivating aspects of the Peras design
Here, we list attacks that motivate (and are hence prevented by) certain rules of the Peras design.

A.2.1 Attack on a variant of the block creation rule
Peras enters a cooldown period when a round does not give rise to a certificate. In order to coordinate
the end of the cooldown period, a certificate is included on chain.

When an honest node is elected in a slot in round r, it includes the latest certificate cert′ it has seen
if and only if all of the following hold:

a) The node has not seen a certificate cert with round(cert) = r − 2.

b) r − round(cert′) ≤ perasCertMaxSlots.

c) round(cert′) > round(cert∗).

Here, rule c) makes sure that an honest node never includes a certificate that has already been included
in our current selection. Rule b) allows us to disregard votes/certificates beyond a certain age.

Rule a) makes sure that all honest nodes have stopped voting, preventing useless certificate inclu-
sions. Concretely, rule a) implies that no honest node voted in round r − 1, assuming that round r − 3

was successful (i.e. we were not in a cooldown phase, so the voting rule (VR-2A) doesn’t apply in round
r − 1).

3However, such reductions in chain quality are not necessarily too unexpected in the presence of such strong adversaries, and
the situation might overall still be better than with pure Praos.
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To see this, we consider the contrapositive, i.e. assume that an honest node did vote during round
r − 1. Due to voting rule (VR-1A), it must have observed a certificate for round r − 2 at the beginning
of round r − 1. However, as perasRoundSlots ≥ perasDelta, the votes for that certificate (including
adversarial ones) must have been diffused to all honest nodes before round r. Therefore, rule a) is not
satisfied for any honest node during round r.

In contrast, if we were to modify rule a) to be about the absence of a certificate in round r− 1, then
an adversary could force nodes to unnecessarily include a certificate on chain. Concretely, the adversary
can diffuse its votes shortly before the start of round r, such that some honest nodes see a quorum for
round r − 1, while others do not. If the latter category of nodes is sufficiently small, then them not
voting during round r does not preclude the possibility of round r being successful, in which case they
will vote again in round r as normal. However, the modified rule a) would still force them to include
the most recent certificate on chain when they are elected before they receive the adversarial votes for
round r − 1, which we want to avoid.

It may be useful to clarify that the harm of honest nodes unnecessarily including a certificate on
chain is not necessarily the presence of the certificate itself. Note that an adversary can include a
certificate in any block they mint, for example, with the only risk being reputational harm. Instead, the
harm done by honest nodes including unnecessary certificates in the honest blocks they mint is that the
limit on block size means the bytes occupied by the certificate could have otherwise been occupied by
transactions.

A.2.2 Adding weight to Genesis density comparisons
The implementation approach of Ouroboros Genesis in the Cardano node fundamentally relies on the
following property, justified by the analysis of the Genesis chain selection rule in [Bad+18]:

Density of Competing Chains

Let p be any historical point on the honest chain. The honest chain of a net that has always
executed Praos under nominal conditions will have strictly higher density in the sgen slots im-
mediately following p than any alternative chain that intersects at p.

Here, the density of a chain in a range of slots is defined to be the number of blocks in that range.

With Peras, it is natural to modify this property to talk about the weight in the sgen slots instead of
just the number of blocks:

Weighted Density of Competing Chains

Let p be any historical point on the honest chain. The honest chain of a net that has always
executed Peras under nominal conditions will have strictly higher weight in the sgen slots imme-
diately following p than any alternative chain that intersects at p.

In the implementation, relying on this rule instead of Density of Competing Chains results in
additional complexity and operational costs:

• A syncing nodemust download certificates in order to performGenesis density comparisons. This
requires modifications to the existing Genesis logic, which currently gets by with looking purely
at header chains.
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• Nodes need to store certificates boosting blocks on the historical/immutable chain stored indefi-
nitely, such that they can be given to syncing peers. This increases disk and outbound bandwidth
requirements.

However, this complexity is necessary, as appendix A.1.3 describes an attack that would be possible if
we were to keep using Density of Competing Chains instead of implementing Weighted Density
of Competing Chains. Concretely, the adversary can use the attack to let the honest chain to have
less than ϕ(α) · sgen blocks (i.e. the average number of blocks on a chain they can create completely by
themselves) in a window of sgen slots, despite having higher weight. Once successful, the adversary can
cause syncing nodes to commit to the adversarial chain permanently, violating safety.

A.2.3 Spamming equivocating votes
The adversary can equivocate any of their seats in the voting committee of a Peras round by creating
more than one vote for each seat, voting for different blocks. An adversary with α < 1/2 stake can not
use this to cause a quorum for different blocks in the same round due to the choice of perasQuorum = 3/4

and a quorum intersection argument.
However, in a naive implementation, the adversary can use equivocating votes to cause unbounded

additional network traffic for honest nodes. Most directly, they can send many equivocating votes to
any of their peers individually. If this is disallowed (by requiring nodes to only forward the first vote
per voting committee seat per round), the adversary can diffuse different equivocating votes to different
peers, such that nodes still download many different equivocating votes from their peers.

We now describe how this can be avoided; specifically, honest nodes will only ever download at
most one vote (or alternatively, a bounded amount of votes) per voting committee seat per round.

An honest node downloads votes from its peers in two stages:

a) In the first stage, it requests and downloads vote IDs from its peers.
The vote ID must be chosen as to uniquely identify a voting committee seat in a particular round.
Concretely, it can be represented as the round number and a proof of eligibility, which might be
the stake pool identity or a VRF proof.
Also, we assume vote IDs to be significantly smaller than full votes.

b) In the second stage, the node downloads votes corresponding to all vote IDs without duplicates.
Upon receiving a vote, it is checked that the vote matches the supplied vote ID.
This way, observing equivocating votes is impossible.

As an optimization (for example to reduce the impact of slow peers), the same vote ID could also be
requested from multiple peers (bounded by a small constant) in b). While possible and sound, it is not
necessary to discard equivocating votes received this way.

Additionally, this approach requires us to diffuse of certificates in addition to votes in general (even
between caught-up peers). To see why, consider two honest nodes H1,H2 and an adversarial node A
which are pairwise connected. Suppose that we are in round r, bothH1 andH2 are only one vote short
of a quorum for the block B in round r, and all honest votes for round r have already been diffused.
Now the adversary sends H1 and H2 a new vote ID vid, and then equivocates vid to send a vote vB
for B to A, but a vote vB′ for a block B′ ̸= B to A′. Now A observes a quorum for B in round r,
creating a certificate, while A′ does not. The vote diffusion mechanism described above causes A′ to
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not request a vote for vid from A, because A′ already has received vB′ .4 Overall, the honest nodes A
andA′ now disagree whether round r was successful, which they would not have if they had exchanged
all equivocating votes.

However, by letting nodes also exchange certificates in addition to votes, this scenario can be avoided.
Concretely,A′ would askA for a certificate for round r, and then download the certificate forB. It does
not matter that the certificate was built using an equivocating vote; in general, depending on the crypto-
graphic scheme used for building certificates, it can even be impossible to detect this. By construction,
there can be at most one certificate per round, so there is no risk of equivocating certificates.

4Potentially, if A′ implements the optimization mentioned above, i.e. to download votes for the same vote id from multiple
peers opportunistically, they might download vB from A, but this is not something we can rely on in general.
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